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Abstract Despite the formal exponential decay behavior of
Wannier functions (WFs), their spatial extent, which is a key
parameter determining the computational cost of local cor-
relation calculations for solids, is still rather large. The prob-
lems with the localization of the WFs can partly be attributed
to their mutual orthogonality. Possibilities of reduction of the
spatial extent of the WFs without losing the accuracy of the
calculations are investigated.A method for generation of non-
orthogonal ultralocalized functions based on maximization of
their Löwdin populations is developed. A scheme for fitting
of the WFs and nonorthogonal localized functions with a lim-
ited support is proposed. The calculations show that by com-
bining both techniques one can obtain quite compact linearly
independent localized functions, which may significantly de-
crease the computational cost in post-HF calculations.

Keywords Wanniee functions · Nonorthogonal localized
functions · Local correlation methods · Symmetry in crystals

1 Introduction

Post-HF theories and other computational techniques for elec-
tronic structure calculations during many decades have been
utilizing the canonical one-electron orbitals. However, these
orbitals have the inconvenient property of being delocalized
over the whole spatial extent of the system, which leads to
high scaling of the computational cost with respect to the
system size. On the other hand, it is not essential whether
to use the canonical one-electron functions or their linear
combinations to form the determinants for the many-electron
wavefunctions. Recently, low-order scaling algorithms have
been developed for electronic structure calculations, which
use localized or Wannier – in case of periodic systems – func-
tions [11,22,25].

Wannier functions (WFs) were initially introduced as far
back as 1937 [31] and ever since then they play an important
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role in the solid state theory. However, for quite a long time
their application was restricted mainly to pure theoretical
modeling without actual calculations. But in the last decade,
after a number of effective methods for numerical generation
of WFs had been developed [16,17,29,30,34], they have also
been very intensively used in practical calculations of various
properties of solids [2,9,13,19,22,24,27,35].

ThoughWFs are spatially localized, the localization region
can be relatively large. As an illustration one can consider
the case of diamond. In the linear combination of atomic
orbitals (LCAO) approximation, the WFs are represented by
the AO expansion coefficients. The coefficients of the four
translationally inequivalent WFs (which correspond to the
four upper valence bands of the HF reference) larger (in
absolute value) than a threshold of 10−4 comprise the atomic
functions centered in as much as 435 (!) unit cells. Such a
wide extent of WFs makes accurate calculations for solids
computationally difficult.

The slow decay of WFs is often related to their mutual
orthogonality, which gives rise to long range oscillating tails,
containing no physically relevant information. For quite
sometime now, the possibility to avoid these tails by sac-
rificing orthogonality has been discussed. Many important
results concerning the localization properties of WFs and
nonorthogonal localized orbitals (NOLO) (following most
of the authors, we don’t use the term “Wannier functions”
for nonorthogonal localized functions) were obtained for the
one-dimensional (1D) case. In 1959, W. Kohn, in his clas-
sical work on analytical properties of Bloch and Wannier
functions for 1D periodic potentials with a center of inver-
sion, proved the existence of real, symmetry adapted expo-
nentially decaying WFs [14]. In 1961, Andersen showed that
in the 1D case, the spread of the NOLOs can be lower than
that of the WFs [1]. He introduced the term “ultralocalized”
for such nonorthogonal functions. Much later, expansions of
such functions with minimal spread in a basis of Gaussians
situated on a 1D grid were studied [33]. Recently, He and
Vanderbilt [12] showed that the actual decay rate of the 1D
Wannier functions W(r) is not just an exponential:

W(r) ∼ exp(−hr), (1)
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but rather an exponential times a power-law prefactor:

W(r) ∼ r−α exp(−hr), (2)

where h is a parameter depending on the band gap widths, and
α is a constant which in 1D takes the values of 3/4 for WFs,
and 1/2, 3/2 and 5/2 for nonorthogonal localized functions
of different types. This, at the first glance inessential prefactor
of the exponential is actually quite important, since, writing
(2) in the logarithmic scale:

ln(W(r)) ∼ −αln(r) − hr, (3)

and taking the actual values of α, reveals the fact that
nonorthogonal functions can be essentially more localized
than WFs, as the NOLO with α = 5/2 can be (for a certain
r) some orders of magnitude closer to zero than the WF with
α = 3/4.

Following the results of the 1D investigations of WFs and
nonorthogonal functions, much attention has been paid to the
three-dimensional (3D) case, as well (for which analytical
results are not always available). Unfortunately, it turned out
to be not that straight-forward to construct 3D nonorthog-
onal functions with a better localization than that of WFs.
Surprisingly, real nonorthogonal functions W

(no)
i (r) (index i

numbers the functions in the reference unit cell) that mini-
mize the spread functional

I
(spr)
i =

∫
r2(W

(no)
i )2dr − [

∫
r(W(no)

i )2dr]2 (4)

do not show any significant difference from their orthogo-
nal counterparts [21]. The same effect was observed when
functionals of the following form

I
(wi)
i =

∫
wi(r)(W

(no)
i )2dr, (5)

where wi(r) is a compact Gauss- or a delta-function centered
in the vicinity of the center of the function W

(no)
i (r), were

used [8,29]. In Mayer et al. [17] a maximization of LCAO
Mulliken net populations of the nonorthogonal functions in
the reference cell was proposed. However, since the Mulliken
population of a function on a set of atoms can exceed unity
due to nonorthogonality of theAO basis, such a procedure still
leads to nonorthogonal localized functions with noticeable
“tails”. Nonorthogonal orbitals have also been constructed
by projecting some trial localized functions onto the occu-
pied space [20,21]. The resulting functions appeared to be
either again quite similar to the corresponding WFs or, in
some cases, even more delocalized than the latter.

An efficient method for generating NOLOs for subse-
quent quantum Monte-Carlo calculations has been proposed
in Reboredo and Williamson [23]. As the calculations have
shown, it allows one to obtain very well localized nonor-
thogonal functions, which drop practically to zero beyond a
certain region, for nonconducting crystals and even for met-
als. The method implies maximizing the functional of the
form (5) with the weight function

wi(r) = �(R
(cut)
i − |r − ri |), (6)

where �(x) is the Heaviside step-function, ri is the centroid
of the function W

(no)
i (r), and R

(cut)
i is the cutoff radius. Thus,

the square of the function W
(no)
i (r) is maximized inside a

sphere of a radius R
(cut)
i . The process of NOLO construction

is preceeded by setting the tolerance for the value 1 − I
(wi)
i

with wi defined in (6). Then, one successively increases the
cutoff radius, until the chosen tolerance is satisfied. Finally,
the R

(cut)
i so obtained is used for constructing the NOLOs.

The calculations have shown that the method is efficient for
generating essentially compact NOLOs, provided the cho-
sen tolerance is sufficiently low. For example, in the case of
bulk Silicon, the NOLOs are noticeably more compact than
the WFs and tend to concentrate entirely inside the sphere
and thus feature no long-range “tails”, provided the toler-
ance is chosen less than 10−2 (the cutoff radius then turns
out to be larger than 3 a.u.). There are similarities between
this method and order-N DFT schemes [28,11], where the
nonorthogonal localized orbitals are assumed to be nonzero
inside a pre-specified localization region only.

Though the method from Reboredo and Williamson [23]
seems to be quite promising, it is not actually applicable for
the LCAO calculations due to difficulties with evaluating the
integrals of Gaussians over a finite region. But the possibility
to get rid of the WFs’ tails may have a significant impact on
the efficiency of local correlation methods like local Møller-
Plesset second order perturbation theory (LMP2). For these
methods the most expensive step is the evaluation and trans-
formation of four-index two-electron integrals, where the
computational cost is governed by the spatial extent of the
AO support of the individual WFs. In this paper, we pres-
ent techniques for constructing compact WFs or NOLOs in
AO basis sets. The intention is to improve the efficiency of
the local correlation methods in nonconducting crystals [22].
Nevertheless, the results are general and can also be applied
to other cases where the LCAO expansion of WFs is a critical
issue. The first results on using these functions in the context
of LMP2 are reported.

2 Nonorthogonal ultralocalized functions

The first step in the construction of NOLOs is the specifi-
cation of an appropriate functional to be minimized or max-
imized. The LCAO expansion of the WF Wi(r) is defined
as

Wi(r) =
∑
µ,R

CµR,iφµ(r − R) ≡
∑
µ

Cµ,iφµ(r), (7)

where φµ(r − R) represents the atomic function centered in
the Rth unit cell, CµR,i is the corresponding AO–WF coeffi-
cient and index µ combines the indices µ and R. We define
as the variational functional to be maximized, the Löwdin
population of the given localized function on a set of atoms
surrounding its centroid:

I
(no)
i =

∑
µ∈S(loc)

i

(C
(no−Lw)
µ,i )2 = 〈W(no)

i |P̂ (Lw)

S(loc)
i

|W(no)
i 〉, (8)
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where C
(no−Lw)
µ,i are the expansion coefficients of the NOLO

W
(no)
i (r) over the Löwdin-orthogonalized atomic basis set

functions φ(Lw)
µ (r):

W
(no)
i (r) =

∑
µ

C
(no−Lw)
µ,i φ(Lw)

µ (r), (9)

φ(Lw)
µ (r) =

∑
µ′

(S
(AO)
µ′µ )−1/2φµ′(r), (10)

S
(AO)
µ,µ′ is the AO overlap matrix, and P̂

(Lw)

S(loc)
i

is an operator

projecting onto the space of the Löwdin-orthogonalized AOs
from the given set of atoms:

P̂
(Lw)

S(loc)
i

=
∑

µ∈S(loc)
i

|φ(Lw)
µ 〉〈φ(Lw)

µ |. (11)

The set of atomic orbitals S(loc)
i determines the region (or the

set of atoms), the corresponding localized functions W
(no)
i (r)

should concentrate within. The functional Eq. (8) acts in a
way similar to the one proposed in Reboredo and William-
son [23] and, at the same time, is appropriate for LCAO
calculations.

Maximization of the functional (8) with a constraint of
normalization of the functions W

(no)
i (r) can be carried out

by diagonalizing the matrix of the operator P̂
(Lw)

S(loc)
i

(11). The

eigenvector of this matrix, corresponding to the highest eigen-
value, holds the coefficients of the expansion (9), providing
the most localized NOLO in the sense of the functional I

(no)
i .

The basis for this matrix could be formed by the Bloch func-
tions of the occupied bands [23,29], WFs or even atomic
orbitals, projected onto the occupied space [17].

During generation of the nonorthogonal functions one
should not lose the rank of the space spanned by these func-
tions (i.e., the linear independency of the functions should be
kept). For the crystals of sufficiently high symmetry the rank
can be preserved automatically, if the basis used for the varia-
tional procedure is symmetrized [8]. The localized functions
are basis functions of irreducible representations (irreps) of
the site groups related to the centroids of these functions
[7]. Thus, if the basis for the functional (8) is symmetrized
according to these very site group and irrep, the centering
site of the localized function cannot change [7,8]. So, when
the localized functions are centered on an isolated symmetry
point, the symmetrization of the basis keeps the functions
linearly independent. Moreover, even if the centroid of the
localized function is not an isolated symmetry point, but the
symmetry of the crystal is still high enough, the rank still may
be kept by just taking symmetry into account.Yet, in this case
the latter is not guaranteed. If preservation of rank cannot be
assured by applying symmetry, one may have to apply some
additional constraints — e.g., as suggested in Lui et al. [15],
the constraint of the nonsingularity for the localized functions
overlap matrix, or Feng et al. [10], the constraint of freezing
the centroids of the localized functions. However, the lat-
ter constraint might collide with the requirement of higher

localization, if the centers of the functions are not fixed by
the symmetry.

The variational procedure should be performed in the
space of the first vectors of the corresponding irreps. In other
words, only symmetry-unique localized functions are to be
obtained variationally. The remaining functions can be gen-
erated by applying the appropriate symmetry operators [8,
7,29]. If there is more than one independent set of local-
ized functions centered on the same site and transforming
according to the same irrep, one can obtain all of them in the
variational procedure either by taking the eigenfunctions of
the diagonalized matrix corresponding to several of the high-
est eigenvalues instead of just one, or by performing inde-
pendent procedures for their generation. In the latter case,
the variational procedure should be run in the WF-basis, and
only one out of several WFs with the considered symmetry,
which are centered on the same site, should be included into
this basis. The symmetry properties of the WFs and local-
ized functions can either be determined before (or without)
the actual construction of WFs, by analyzing the symmetry
of the Bloch functions corresponding to the valence bands
[7,29], or a posteriori by applying the technique of Casassa
et al. [3] to nonsymmetrized WFs [34].

3 Fitting of localized functions

Unlike molecular localized orbitals,WFs have an infinite sup-
port, which means that the actual limit for the summation over
the index R in (7) is infinity. Thus, in numerical calculations
the sum (7) has to be truncated according to some thresh-
old. In the present LMP2 code implemented in the CRY-
SCOR program, [22] a screening based on the magnitude of
the WF coefficients is employed. In effect, all contributions
due to WF coefficients below that screening threshold are
disregarded. Unfortunately, only relatively loose thresholds
can presently be afforded in practical calculations [22] and
the numbers of R taken into account may become a criti-
cal parameter influencing significantly the accuracy of the
calculation. For example, the four-index transformation of
the two-electron integrals in CRYSCOR uses tolerances for
the LCAO coefficients of the WFs of 10−2–10−3. Such loose
thresholds can hardly guarantee sufficient accuracy for reli-
able results, yet tighter thresholds render the calculations too
expensive.

In order to treat the truncation of the WFs’ tails in an
improved way we introduce the criterion I

(fit)
i :

I
(fit)
i =

∫
(W̃i(r) − Wi(r))2dr. (12)

Here the function W̃i(r) is the truncated localized function:

W̃i(r) =
∑

µ∈S(fit)
i

Cµ,iφµ(r), (13)

and S(fit)
i contains an incomplete set of atomic functions

centered only on atoms, which are in a way close to the cen-
troid of the WF Wi(r). The criterion (12) is utilized to fit the
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WF spanned by the basis functions within S(fit)
i (WF–AO fit

domain) in a least-square sense with respect to the untrun-
cated function. Hence, minimizing the functional I

(fit)
i yields

the fitted WFs

W̃
(fit)
i (r) =

∑
µ∈S(fit)

i

C
(fit)
µ,i φµ(r), (14)

with the fitted coefficients C
(fit)
µ,i , obtained by solving the lin-

ear equations∑
µ′∈S(fit)

i

S
(AO)
µ,µ′ C

(fit)
µ′,i =

∑
µ′

S
(AO)
µ,µ′ Cµ′,i . (15)

The fitting according to (15) is formally equivalent to other
fitting techniques like density fitting [26,32], with the AOs
from the WF–AO fit-domain in the role of the auxiliary basis
functions.

By successively adding coordination spheres of atoms
and thus their atomic functions to the set S(fit)

i and refitting
the coefficients C

(fit)
µ′,i one can finally obtain the fitted WF

W̃
(fit)
i (r) which to a given tolerance approximates the exact

WF Wi(r). Within a chosen tolerance the number of atoms
contributing significantly to the fitted WFs W̃

(fit)
i (r) is essen-

tially smaller than that of the functions W̃i(r).
The fitting procedure can be applied also to the NOLOs,

once they are constructed. The localization-fitting process for
the NOLOs is most efficient when the set of atomic orbitals
S(loc)

i and WF–AO fit-domain S(fit)
i at both stages are chosen

to be the same. Indeed, small values of the fitting functional
I

(fit)
i can be expected, if all the sites with relatively large value

of the NOLO are included in the corresponding WF–AO fit-
domain. Thus, it does not make sense to use domains S(fit)

i

smaller than S(loc)
i , since the latter guarantees small values

for localized functions only outside its region. On the other
hand, if the value for the fitting functional within the chosen
WF–AO fit-domain S(fit)

i is not sufficiently small, it is more
efficient, when one does not just enlarge it (as in the case
of WFs), but recalculates beforehand the reference NOLOs
with the new set S(loc)

i enlarged accordingly.
Actually, only the LCAO coefficients of the NOLO (or

WFs) C
(no)
µ,i (Cµ,i) can be refitted by minimizing the func-

tional (12). The Löwdin coefficients C
(no−Lw)
µ,i (C(Lw)

µ,i ) can-
not be modified by the fitting (15), since the corresponding
AO overlap matrix involved is the identity matrix. It means
that the Löwdin coefficients within the WF–AO fit-domain
are optimal with respect to the functional (12) providing
its minimum. For orthogonal atomic-like basis sets (such
as Löwdin-orthogonalized AOs, or orthogonal wavelets [4])
the fitting process just corresponds to the truncation of the
WF coefficients according to the chosen WF–AO fit-domain.
Constructing the NOLO in the case of orthogonal basis sets
might be more efficient, since the localization functional (8)
addresses the coefficients relative to the orthogonalized basis
set functions directly. The efficiency of the fitting procedure
for the localized functions depends on redundancies carried

in the corresponding basis sets, which are large in case of
highly overlapping basis sets.

Summarizing the aforesaid, the method for obtaining ul-
tralocalized nonorthogonal fitted functions implies the fol-
lowing. Once the symmetry of the localized orbitals has been
determined, for every symmetry-unique function the varia-
tional procedure in the symmetrized basis according to the
functional (8) is performed, followed by generating the fitted
functions with limited support from the former by solving
(15). The sets of the atomic orbitals S(loc)

i and S(fit)
i in these

two steps are to be taken the same. If the value of the fitting
functional (12) doesn’t drop below a predefined threshold, a
new star of atoms is added and the process is repeated.

The atomic functions projected onto the orthogonal com-
plement of the occupied space (PAOs), which represent in
the framework of local correlation methods the virtual states
[22,25], are also localized functions. Therefore, similar tech-
niques could also be used to restrict the spatial extent of these
PAOs. However, since PAOs are to be constructed by project-
ing out the space spanned by the fitted WFs or NOLOs (rather
than the untruncated parental WFs or NOLOs), we anticipate
that PAOs will automatically posses a limited support, deter-
mined basically by the WF AO fit-domains S(fit)

i .

4 Calculations

The proposed methods have been applied to the diamond
crystal. This crystal has a face-centered cubic (fcc) lattice
with the space group O7

h . The four valence WFs per unit cell
are centered in the middle of the C–C covalent bonds. These
sites are isolated symmetry points with D3d site-symmetry
group. The WFs and nonorthogonal functions studied below
are linear combinations of HF canonical crystalline orbitals,
obtained by the periodic LCAO code CRYSTAL03 [6]. The
optimized 6-21G* basis set [5] was used for the calculations.
The reciprocal space was sampled by 8×8×8 Monkhorst–
Pack [18] k-points mesh.

Figure 1 gives the orthogonal (dashed line) and nonor-
thogonal localized orbitals, obtained with the sets S(loc) of
three (dash-dotted line) and five (solid line) stars of atoms.
It is clearly seen that, when the chosen S(loc) is sufficiently
large (three and, especially, five stars), the nonorthogonal
functions are essentially more localized and smooth than the
orthogonal ones. They do not posses the oscillatory tails, as
their values drop virtually to zero beyond a certain region.

Though the explicit behavior of the NOLOs is quite clear,
their higher concentration around the centering point might
not be noticed through analyzing their LCAO coefficients.
The values of the Löwdin coefficients C

(Lw)
µ,i and C

(no−Lw)
µ,i of

orthogonal (circles) and nonorthogonal (stars) localized func-
tions, averaged over AOs of different stars of atoms are given
in Fig. 2a.As one might expect, the coefficients for the nonor-
thogonal functions on average are considerably smaller (one
or more orders of magnitude) than the ones of the WFs. But
the LCAO coefficients, Cµ,i and C

(no)
µ,i , which are to be used

in the actual calculations, behave differently. Their averaged
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Fig. 1 Wannier function(dashed), nonorthogonal localized orbitals
localized within three (dash-dotted) and five (solid) stars of atoms, for
diamond along the [001] axis. The origin is placed at the WF’s centroid

values are presented in Fig. 2b. As seen from this plot, the
coefficients for WFs and NOLOs are approximately of the
same order of magnitude. This fact indicates that the absolute
values of the LCAO coefficients cannot serve as an efficient
criterion for dropping the tails of the localized functions. The
coefficients may have relatively high absolute values and at
the same time the correspondingAOs might cancel each other
due to redundancies in the nonorthogonal AO basis. This
annoying effect is properly cured by introducing the criterion
(12) and subsequent fitting of the localized functions. This
criterion reflects more the explicit WF’s or NOLO’s behavior
rather than the behavior of its coefficients. As a result of the
fitting, the coefficients of otherwise canceling AOs would be
set to zero, while the overall precision is maintained.

The values for the functional I
(fit)
i (12) for functions of

four types – non-fitted and fitted WFs and non-fitted and fit-
ted NOLOs – are given in Fig. 3 on logarithmic scale. It is
evident that fitted WFs, and especially fitted NOLOs, when
used in the calculations of the two-electron integrals, can
significantly improve the performance. Thus, for a chosen
threshold of the functional (12) (which, at the end of the day,
reflects the accuracy in the correlation energy), switching to
the fitted and/or nonorthogonal functions significantly cur-
tails the number of atoms over which these function extend,
which in turn implies a substantial reduction in the com-
putational cost of local correlation calculations employing
these functions. For example, the WF fitted to the WF–AO
fit-domain comprising the AOs from 8 atoms has approxi-
mately the same accuracy (the value of the functional (12))
as the non-fitted WF with the support of the AOs from not
less than 32 atoms. Similarly, the value of the fitting func-
tional for a NOLO using a WF–AO fit-domain of 32 atoms
has approximately the same value as that of a WF with a
support of 136 atoms, etc. Alternatively, if the localization
region (and with this the cost of the correlation calculation)
is fixed, the accuracy may be essentially increased by up to
two orders of magnitude (at least at the level of the localized
functions). These two strategies can also be combined.

a

b

Fig. 2 Averaged over the atomic orbitals of the given star of atoms the
Löwdin (a) and LCAO (b) coefficients of the WF (circles) and NOLO
(stars) for diamond. The NOLO was localized within five stars of atoms.
The axis of abscissas is partitioned according to the indices of the stars,
but labeled by the number of atoms within these stars

Fig. 3 The values of the functional (12) for the WF (circles), fitted
WFs (rhombs), NOLOs (stars), fitted NOLOs for diamond. The axis of
abscissas is partitioned according to the indices of stars included in the
calculation of this functional (and also used for fitting and construction
of the corresponding WFs and NOLOs), but labeled by the number of
atoms within these stars
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Fig. 4 The minimal eigenvalue (circles) of the NOLO’s overlap matrix,
and the absolute value of the actual overlap between the closest NOLOs
(squares) in diamond

The axis of abscissas in Figs. 2 and 3 is partitioned equi-
distantly with respect to different stars of atoms. This implies
that the distance between the atoms of a star and the center
does not increase linearly with the star index. As a conse-
quence the WF’s coefficients and the functional (12) values
tend towards a plateau (in the logarithmic scale) instead of
decreasing linearly to zero. It can also be seen from Fig. 3
that the non-fitted NOLOs for some sets S(loc) correspond
to approximately the same values of the integral I

(fit)
i as the

fitted WFs.
Figure 4 contains important information about the over-

lap and linear independence of the nonorthogonal functions.
Evidently, while the set S(loc) is relatively small (one star),
the corresponding nonorthogonal localized functions do not
overlap essentially and also do not differ much from the corre-
sponding orthogonal WFs.At larger sets S(loc) the nonorthog-
onal functions become noticeably different – their localization
and overlap essentially increase and the minimal eigenvalue
of the NO–LOs overlap matrix (S(NOLO)) becomes smaller.
The maximal compactness of the functions is achieved for
the sets S(loc) comprising five stars. The minimal eigenvalue
of the overlap matrix then drops to a value somewhat higher
than 0.01, so these functions remain linearly independent.
Further increase of the set S(loc) does not lead to any major
changes in the studied parameters.

As mentioned above, fitting of the WFs and NOLOs acc-
ording to (15) can improve the criterion (12) only if the
basis functions are overlapping. Calculations with the STO-
3G minimal basis set revealed the Löwdin-like behavior of
the WFs and NOLO coefficients, as the LCAO coefficients
explicitly reflected the improved localization of the nonor-
thogonal functions. Moreover, fitting of the localized func-
tion coefficients did not substantially reduce the functional’s
value, just as in the case of Löwdin coefficients before. The
reason of this behavior is that the STO-3G basis does not
contain diffuse functions and carries less redundancy than
the 6-21G* basis set. The overlap of the AOs is small, hence,
the Löwdin orthogonalization has relatively little effect on

Table 1 Comparison of the MP2 calculations for diamond using non-
fitted Wannier functions (WFs) truncated beyond three stars of atoms
and fitted WFs with the WF–AO fit-domain, consisting of three stars

Type of calculation MP2 energy E2 E2 − E
(ref)
2 CPU time

(Hartrees) (Hartrees) (sec)

Reference −0.22362 198626
Nonfitted WF −0.21652 0.00710 21138
Fitted WF −0.22238 0.00124 21272

The reference calculation E
(ref)
2 corresponds to the lowest manageable

by the CRYSCOR program (in its current status) threshold (0.0005) for
the WFs coefficients. The calculations are rather illustrative, since all
other thresholds were taken to be quite large in order to speed up the
calculation

the AOs. We can thus conclude that the more diffuse orbitals
are included in the basis set, the greater is the impact of the
fitting on the localized functions’ coefficients.

Finally, the proposed techniques were examined in illus-
trative LMP2 calculations. Since in the present version of the
CRYSCOR code a possible nonorthogonality of the localized
functions, representing the occupied manifold is not taken
into account, the LMP2 energy in diamond has been calcu-
lated using only orthogonal WFs with and without fitting.
The weak and distant pair distances were set to 2Å [22]. The
threshold for PAOs coefficients was set to 10−2. Only the
coefficients for the AOs from the first three stars of atoms
were included in the transformation of the 4-index integrals
(WF fitting was also performed within the first three stars of
atoms). LMP2 correlation energy and timings were then com-
pared with the corresponding values of a reference calcula-
tion, which were obtained by employing quite a low screening
threshold of 5 · 10−4 for the WF coefficients (smaller thresh-
olds are hardly manageable, presently [22]). The results of
these calculations are presented in Table 1. Evidently, the
fitting of WF coefficients can improve the accuracy and/or
reduce the computational cost of the LMP2 calculations for
solids. As seen from Table 1, if fitted WFs are used, the est-
imate of the error in the calculated MP2 energy (the differ-
ence between the calculated and reference energies) becomes
substantially smaller, while the CPU time of the calculation
remains about the same.

5 Conclusions

In conclusion, a method for generating compact nonorthogo-
nal ultralocalized functions has been devised. The proposed
procedure is to maximize the Löwdin population of the func-
tions within a given set of atomic functions. It turns out
that this set of AOs has to reach a certain size, otherwise
no significant difference relative to the parental orthogonal
WFs, i.e., not an increased compactness is achieved. Fur-
thermore, a scheme for fitting truncated WFs and nonor-
thogonal localized orbitals (support of AOs limited to WF–
AO fit-domains) to the original untruncated functions has
been proposed. The calculations showed that by virtue of the
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fitting process the truncated fitted localized functions, and in
particular the non-orthogonal ones, improve insofar that the
specified criterion considerably decreases compared to the
corresponding functions obtained by just truncating accord-
ingly. Preliminary calculations of the LMP2 energy using
the LMP2 method implemented in the CRYSCOR program
demonstrated that an improvement in the accuracy of the
calculation can be achieved if fitted rather than just truncated
WFs are employed.

Acknowledgements The authors acknowledge the support by DFG-
grant SCHU 1456/3-1.

References

1. Anderson PW (1968) Phys Rev Lett 21:13
2. Calzolari A, Marzari N, Souza I, Nardelli MB (2004) Phys Rev B

69:035108
3. Casassa S, Zicovich-Wilson CM, Pisani C (2005) Theor Chem Acc

(to be published)
4. Clow SD, Johnson BR (2003) Phys Rev B 68:235107
5. CRYSTAL basis set database http://www.crystal.unito.it/basis.html
6. Dovesi R, SaundersVR, Roetti C, Causa M, Harrison NM, Orlando

R, Apra E (2003) CRYSTAL 2003 User’s Manual. Torino Univer-
sity, Torino

7. Evarestov RA, Smirnov VP (1997) Site symmetry in crystals: the-
ory and applications. Springer series in solid state sciences, Vol
108. Springer, Berlin Heidelberg New York

8. Evarestov RA, Usvyat DE, Smirnov VP (2003) Phys Solid State
45:2072

9. Evarestov RA, Smirnov VP, Usvyat DE (2003) Solid State Com-
mun 127:423

10. Feng H, Bian J, Li L, Yang W (2004) J Chem Phys 120:9458
11. Goedecker S (1999) Rev Mod Phys 71:1085
12. He L, Vanderbilt D (2001) Phys Rev Lett 86:5341
13. King-Smith RD, Vanderbilt D (1993) Phys Rev B 47:1651
14. Kohn W (1959) Phys Rev 115:809
15. Lui S, Perez-Jorda JM, Yang W (2000) J Chem Phys 112:1634
16. Marzari N, Vanderbilt D (1097) Phys Rev B 56:12847
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